At the end of 2016, diver training agencies including BSAC launched Sea Survival training courses developed in conjunction with the RNLI. Despite the common view of the RNLI as being the provision of lifeboats and crew, there is much more that they are involved in from a safety at sea perspective, with particular foci on fishing industry accidents, Swim Safe training courses and safety advice for all water users. It’s astounding how many fishermen don’t wear lifejackets, especially local pot-boat skippers who often work alone.
To try to educate fishermen the RNLI brought a dozen of them from around the UK down to their training base in Poole. All the skippers had previously attended the mandatory Personal Survival Techniques course (and it’s predecessors) which are run in swimming pools around the country. The RNLI trainers asked about lifejackets and got the usual story, the fishermen had them but rarely wore them. The general feedback was that as strong swimmers they were confident that should they fall in the sea, they would be able to swim back to their boat, climb up the tyres on the side and self-rescue. Interestingly, qualified divers and anyone who swam in the sea was excluded from the test group. Repeated attendance at sea survival training had led each fisherman to conclude that their lifejackets weren’t necessary. The RNLI sought to challenge that belief. The night before the training course, the trainers opened the doors around the training pool to let out the heat. Overnight the water temperature dropped to 15 degrees. If you are a diver around the British Isle I am sure there are days where you dream of 15 degree water! At the first attempt the fishermen were asked to wear their normal deck attire and jump in to deep water to simulate falling off their boat. With no life jackets on, the impact of cold water shock was immediate. None of the 12 fishermen lasted longer than 5 minutes before a rescuer intervened. Post dip interviews revealed their shock and surprise at how debilitating the cold water was, definitely nothing like their sea survival training course. Cold water shock is an immediate short-lived response to immersion in water less than 15 degrees. Blood vessels at the skin contract rapidly, increasing blood pressure and the heart rate. An initial gasp for air can be followed by a breathing rate that is 6-10x higher than normal. It is likely that cold water shock accounts for most deaths when people have unexpectedly entered the water. If you are not wearing flotation during this phase, keeping your head above water becomes the biggest problem. Over the next 10 minutes, cold incapacitation reduces blood supply to the muscles, making it difficult to swim or self-rescue. A crew member throwing a life ring to you during this time will be frustrated that you can’t actually hold onto it or kick towards the safety of the vessel. The following day the exercise was repeated but this time with lifejackets being worn. The same cold water shock reaction was initiated, but the fishermen didn’t have to work so hard to keep their airway out of the water, the cold incapacitation stage took longer therefore improving their chances of getting back to the ladder on their boat. You can see the videos from this exercise on the RNLI website. This started me thinking about why divers were excluded from the test group. I’ve realised I still brace myself for the cold water after decades of diving. OK, I’m wearing a drysuit and the cold water shock reaction is pretty much limited to my head and hands. But how many of us drop beneath the surface in anticipation of that brain freeze moment? As the blood vessels rapidly contract they stimulate the trigeminal nerve sending pain signals to your brain. It hurts for a few moments until you become acclimatised. The fishermen in the RNLI training exercise couldn’t get past that brain freeze feeling. I think we sometimes underestimate the impact that cold water immersion has on new divers. I can recognise it enough now, but when I think back to learning in a wetsuit I can remember the feeling of panic, rising heart rate and accelerated breathing rate as I used to get into the water. Although we will all recognise increased air consumption by trainee divers, perhaps part of this is their reaction to cold water immersion? I’m sure that with experience comes the anticipation, the forced control of breathing rate for the first few seconds, but until our new divers have developed their response, maybe we should keep a close eye on them for those first couple of minutes? If your trainees are hoofing through their air and their buoyancy is being disrupted by their rapid breathing rate, maybe it’s something to consider?
1 Comment
Some years ago I craved having a tropical fish tank. I’d had coldwater fish starting with the short-lived goldfish I won at the carnival hoopla stand, but tropical fish seemed like they were more interesting. The big problem is that a fish tank is a bugger of a thing to move and at that time in my life it became a chore and a burden. I relocated 6 times with the fish in bags inside a coolbox, hence it was with some relief that when the last fish died I emptied out the last of the water and put the tank away, promising that when life was a little less hectic I’d get it back out and set it up again. About 6 months later disaster struck when I cracked the glass at one end, but I didn’t get rid of the tank, just planned on repairing it. One of those tasks on my endless to-do list.
And then my goals changed. Stuff the guppies and their frilly tails, why not set up a coldwater marine tank? After all I spend a large amount of my life underwater, why not bring some of the great critters back? Several times a year I visit schools on the Isle of Man and bring a variety of sea creatures in to meet the children and explaining something about their lifecycles. I’ve developed a habit of going and collecting little stuff anyway. A chance conversation with one of our club members who wanted to rehome one of his tanks, ended up in him loaning me a pump and a chiller unit as well as a fish tank without a crack in the end. At 10am we were having a brew in the dive centre and by 2pm I was stood ankle deep on the slipway filling a cleaned out sofnolime container with seawater. Our marine tank was installed and populated within 24 hours. And if I thought the tropical freshwater tank was hard work, I had another shock coming. Weekly 50 litre seawater changes are just hard work. I now spend my time thinking about the ecological balance of the tank much more than I ever bothered with guppies. When you keep tropical fish there is loads of info about how many fish per litre of water etc, for British marine life tanks there isn’t the same guidance. A small edible crab was a disaster and massacred poor Kevin the Masked Crab within 24 hours. Kevin had a dodgy past himself, and was often seen amputating limbs from small brittle stars, so he was called Kevin the Killer Crab, but we had grown fond of him and it was sad to see parts of his exoskeleton scattered around the tank. Our current population includes about 10 hermit crabs, who mainly seem to fight over shells and ignore the rest of the inhabitants. We have two small shore crabs, although one of them is getting a little larger and consequently even hungrier. I’ve a feeling he’ll be heading back to the shore next weekend. We’ve ended up with about 30 North Atlantic Prawns who pounce any food in the tank, and will come to your hand if you put it in. Small Purple Henry starfish, a juvenile scallop, a small common sea urchin, some limpets, Top Shells and Periwinkles complete the scene. We’ve had small fish (they get eaten). The current star of the show is our Leach’s Spider Crab (Inachis phalangium). Leachy has a small triangular carapace which will reach a maximum of 3cm. I picked him as he ran across a sandy patch between rocks. I’ve seen small spider crabs before, but never really bothered too much about them. Leachy’s small size made him a target for the tank. After a short trip in an old ice-cream container, he was released in the tank. On the same day, another diver brought in 3 small Snakelocks Anemones. It turns out that Leach’s Crabs have a commensal relationship with Snakelocks Anemones, the crab benefits but not to the detriment of the anemone. Females stay with their anemone and males will rove around looking for a mate and then return home. They are beautifully camouflaged, with legs covered in sponges and algae. This isn’t by chance, Leach’s Spider Crab actively collects sponges and algae and attaches them to specially shaped spines on their legs and carapace. The sponges are unpalatable and stop predators from attacking the spider crab. The algae form a part of the diet, which also includes food debris from the anemone and the mucus from the tentacles. Our intrepid little Leachy has beautifully evolved to fit into his ecological niche. Admittedly, that’s not meant to be in a dive centre tank, but on the plus side, none of his natural predators are there. We’ve so far avoided large fish or octopus. Periwinkles occasionally find their way out past the pipe work so we’d have no chance of keeping a cephalopod and Leachy is safe for now and I’ve learned a lot more about him. |
AuthorMichelle has been scuba diving for nearly 30 years. Drawing on her science background she tackles some bits of marine science. and sometimes has a sideways glance at the people and events that she encounters in the diving world. Categories
All
Archives
December 2021
|