Over a year ago when we set up our marine tank, complete with filters and chiller, I envisaged that it would be mainly the rock pool animals that would survive. My inexperience at maintaining a marine tank would be compensated by the relatively hardy nature of rock pool creatures. Any critter that has evolved to tolerate massive variations in temperature and salinity (rainwater run off dilutes the salt in rock pools, but evaporation makes them saltier) was probably going to survive my attempts to keep it alive. As time has passed, we have become more adventurous about the creatures that we have attempted to keep, but the latest inhabitant of our tank is another step up…
We have a shark egg case. With a live lesser spotted catshark. And we can see it growing! We see catsharks quite often on dives, in fact they’re probably the most common shark. Many non-divers are stunned when you tell them that there are 21 species of shark that are native to British waters, and probably another 19 or so migratory species too. The film Jaws was released in 1975 and over the past 40 years has had a massive negative impact on the general public’s perceptions about sharks. Organisations like the Shark trust have been battling this perception ever since. Even my own children make jokes about Jaws like sharks, when they have never seen the films and have had the privilege of diving and snorkelling with sharks. And now we have a live shark in the dive centre! We have no idea if the shark in our tank is male or female. It’s currently less than 2cm long and inside it’s 7cm long protective egg case. At this stage there is more yolk than embryo shark. Shining a torch through the egg case allows us to see the embryo wriggling around inside the case. The hunt has been on for a gender-neutral name, and we’ve settled on Charlie the Catshark. We are much more used to seeing mermaids purses wash up on beaches than finding one alive and still growing, and managing to get it into an environment that we can observe its development. We don’t have any dog whelks in our tank. They are voracious predators and you can bet that anything capable of drilling into a Periwinkle shell for a meal would have no trouble getting through the mermaids purse to eat Charlie. Whilst we watch Charlie grow we will see the yolk sac diminish in size. It’s easy to understand that the yolk must contain ‘nutrients’ to allow this growth; amino acids to make proteins for muscle and cartilage, and fatty acids which are vital to make cell membranes and to metabolise for energy. Shark egg yolk can contain over 50% fat which is roughly similar to chicken egg yolk. Most of the fatty acids are unsaturated fats which is important to keep them mobile in the low temperature of the sea. There are no carbohydrates. It’s hard to get carbs into an efficient storage molecule in such a limited space. There are other substances in the yolk vital to Charlie’s development especially hormones which will drive growth and sexual characteristic development. We are going to have a long time to wait. It will take 9-10 months before Charlie chews his/her way out of the egg case. At that point, Charlie will be around 15cm long and will be heading back to the sea before he/she has a chance to eat everything else in the tank. My money is on the shrimp being the first casualties. But really a marine tank in a dive centre is no place for a young shark to grow up. For now, Charlie is safe inside the egg sac and the other inhabitants in our tank are safe from Charlie. We have a rare chance to capture the attention of local children. We often have young visitors into the dive centre to hold a hermit crab, small urchin or starfish, but now we can show them a shark and talk about conservation. We are hoping to catch them before the cultural references to sharks start to become ingrained. The latest viral hit song ‘Baby Shark’ will help too. A combination of an ear-wormy irritating song that kids adore plus the chance to watch Charlie grow. This is a hearts and mind battle we have a good chance of winning. Do do do do do (a quick online search required if you haven’t seen/heard it yet – and my apologies!).
0 Comments
In May 2017, a female Orca (known as Lulu) was found washed up dead on the shoreline on the Isle of Tiree in Scotland. Lulu was one of the last remaining members of Britain’s only resident Orca population, which now only comprises 8 individuals, 4 males and 4 females. This west coast community had been monitored by researchers for over 25 years.
Orcas are very social animals with the Orca mother at the centre of the pod. Her children, including adult sons, stay together throughout their lives. Female Orcas start reproducing around 13 years of age and during her lifetime a female will have 4 to 6 calves and stop reproducing around 40 years of age. Pregnancy lasts about 17 months and is followed by a period of mothering in which other members of the pod will assist with babysitting duties. Different organisms have evolved to have different reproductive strategies. At one end of the spectrum there are organisms which produce a huge number of offspring, in some cases the parent then dies or never reproduces again. This Big Bang reproduction is a good strategy if the organism has a high probability of dying early. If the chances of surviving are low, then it makes sense to invest your energy into a Big Bang reproduction when conditions are right and thus ensure your genes carry on into the next generation. Many fish and some insects employ this strategy including salmon. At the other end of the spectrum are the organisms that have a single or only a few offspring but at multiple times in their lives. Humans along with other large mammals use this strategy, known as iteparous reproduction. These organisms have a low probability of dying early, so it is expected that the offspring will have a good chance of survival to maturity. Any species that takes years to reach breeding maturity and has a limited number of offspring is vulnerable to any factor that impacts on breeding success. In between these two extremes are organisms like coral, who breed en masse at limited times, generating lots of offspring but only when the moon is in the right phase. These organisms have a constant risk of dying throughout their lives and so a constant reproduction strategy is a good idea, balanced against the resources needed for reproduction to happen. Researchers are certain that there have been no new calves born into Lulu’s pod in the last 25 years. The entire pod is ageing and it is likely that during our lifetimes there will be no resident Orcas in British waters. A post mortem on Lulu has provided the clues that man-made polychlorinated biphenyls (PCBs) are likely to be the culprit. There has been concern over the persistence and biological effects of PCBs for many years. Scientists have established that physiological effects can be measured with around 30 milligrammes of PCBs per kg of body tissue. Lulu’s level was 975mg per kg. Furthermore there was not evidence that Lulu had ever been reproductively active or ever had a calf. PCBs are a group of chemicals that were originally made from 1929 until they were banned in 1979, by which time it is estimated around 700,000 tonnes had been produced. They are chemically stable, non flammable, have high melting points and are poor electrical conductors. For many years PCBs were used as insulators in transformers and capacitors and cable insulation, plasticizers in paints and plastic, and pigments and dyes. Does anyone remember the carbonless copy paper? For the younger readers, you’ll need to look up carbon copy (and then you can understand why we cc people on a email) and understand what a revolution it was when carbonless copy paper arrived. PCBs aren’t very soluble in water, but they are easily soluble in organic solvents and in body fat. They accumulate through food chains and long lived species will end up with high levels. PCBs are still being released into the environment today from poorly maintained waste sites, leaks from electrical transformers and incinerators using a temperature too low. By the 1960s PCBs could be found at trace levels in people and animals around the world, not just in heavily populated areas, but in the Arctic too. The health effects are widespread; PCBs cause cancer, reduce the function of the thyroid and the immune system and cause neurological deficits. Importantly for survival of Orca, PCBs reduce conception rates in females and sperm count in males and reduce the birth weight of calves. Lulu’s death was caused by becoming entangled in fishing ropes not by PCBs. However, you don’t often hear about Orcas becoming entangled. They are very intelligent, nimble and aware creatures. It’s highly likely that the PCBs in Lulu’s body impaired her ability to navigate a common hazard, but to be brutally honest the PCBs had killed her chances of reproducing years ago. Her body may have washed up in 2017 but her pod have been dying for years. Humans changed the chances of survival and sadly there is no hope of saving them now. |
AuthorMichelle has been scuba diving for nearly 30 years. Drawing on her science background she tackles some bits of marine science. and sometimes has a sideways glance at the people and events that she encounters in the diving world. Categories
All
Archives
December 2021
|