As divers we all know about the difference between diving in fresh and seawater in terms of needing an extra bit of lead because seawater is just a little bit denser than freshwater. Density is affected by 3 things, salinity, temperature and pressure. At extreme depths the density of seawater increases due to the high pressures. Given that we are recreational divers, the increase in density due to depth isn’t something we need to worry about. There are two common ways of dealing with measuring the density, we could use the density figures in grammes per cm3 or specific gravity. Specific gravity is a comparative scale, but it’s actually fairly easy to calculate actual density using the temperature and salinity for where we are diving (and there’s some great online software that allows you to plug in the relevant figures).
Salinity (how much salt in g is dissolved in 1kg of water) varies quite a bit around the world. To understand the factors affecting salinity you would need to look at how much freshwater run off enters the area. Freshwater is less salty and will have the effect of partially diluting the salt concentration. Local climate will influence how much water evaporates from the sea; in hotter conditions the concentration of salt rises. Lastly, we need to consider how much current circulates the water. One of the most saline seas is the Red Sea, with little freshwater, high temperature and confined circulation. Salinity levels at the northern end can be as high as 4.0% (much higher than the world average of 3.5%). By contrast, in the Baltic Sea, especially around the Gulf of Finland and the Gulf of Bothnia, salinity can be as low as 0.8%. There’s lots of freshwater running in, limited circulation of saltier water through the narrow channel to the North Sea and the lower temperatures reduce evaporation. This sea water is so not salty that it could be safely drunk in a survival situation. In the UK we actually see a little variation between the west coast (3.5%) and the east coast (3.4%). Don’t try drinking this stuff for survival! So salt levels can vary, and as they do, so will the density of the water that you need to displace. How often have you heard someone in a dive resort tell you that you might need a bit more lead here because the seawater is a bit more salty? This got me thinking, how much more salty would it need to be for me to notice,or are there other explanations? Let’s start with the UK. The density of seawater on the Atlantic side at average temperature (assume 12oC) is 1.0267 g cm-3 whereas on the North Sea side, the density will be 1.0258 g cm-3. I know from experience that I haven’t noticed the difference. I do know that wearing twin 7’s in fresh water (1.000 g cm-3) means I don’t need any additional lead, but exactly the same setup in Manx seawater takes 4kg of extra lead. So, for each extra 0.0067g cm-3 I need another 1kg of lead to get my head under water. Taking this logic forward means that in the salty Northern Red Sea at the coldest part of the year (24o), when the density is 1.0275 g cm-3 I’ll be needing another 1kg to sink, which seems reasonable. But, and it’s a really big but, I don’t wear the same neoprene drysuit, Fourth Element undersuit and base layers in the Red Sea as I do in the UK. If I did, I’d need the extra lead and treatment for heatstroke! The Red Sea is a bit of a salinity extreme; for most of the world the average salinity applies, which makes it pretty much the same as the UK. I think it is much more likely that other factors come into play when we head off to other waters. Every time I drag my 5mm wetsuit out I struggle to remember just how much weight I had last time, and of course my suit will be compressing with use and losing buoyancy from new anyway. I err on the side of caution and take an extra lump of lead for the checkout dive. Let’s face it we would all rather be under the water having to control a little extra air in our BCDs than bobbing around like a cork on the surface while the dive master forces a smile and swims over to us with another block. Most of us will use cylinders from the dive centre and there can be a huge variation in the weight of steel cylinders. A 12l cylinder can weight between 13 and 15 kg, and a 15l can vary from 16 to 19kg. Unless your dive centre has cylinders of different weights, they may not even appreciate that they have ‘lighter’ 12s. The situation is worse still if the cylinders are aluminium and are neutral in the water…then you’re really going to need some lead round your waist! Your confusion at needing more lead is easily explained by blaming it on the ‘salty water’ but perhaps there are more factors at play?
1 Comment
|
AuthorMichelle has been scuba diving for nearly 30 years. Drawing on her science background she tackles some bits of marine science. and sometimes has a sideways glance at the people and events that she encounters in the diving world. Categories
All
Archives
December 2021
|