Scallops (Pecten maximus) are a national concern on the Isle of Man. We have some of the most protected scallop populations in the British Isles. Licensed boats can only fish during daylight hours in certain areas of the sea and not during the summer months when the scallops are breeding. The catch is landed into harbours around the island; creamy, pink shells in 25kg bags loaded onto pallets for the forklift truck to move them into wagons.
If you glance down into the harbour its usually possible to spot the white inside of a few discarded shells shining on the seabed below. These shells eventually wash across the bay and onto the beaches, but they don’t always arrive in the same colour as when they were discarded. Many of the shells are stained dark brown or black, colours we never see during dive surveys of scallops. Shells are mostly made of calcium carbonate which is white in colour, mixed in with about 2% of protein. As molluscs develop they absorb minerals from their environment and secrete calcium carbonate from their mantle to create their shell. The protein makes the shell very strong, but lightweight and resistant to dissolving in water. Shells are self-repairing, and the mollusc can secrete more shell material as needed for repair or growth. Naturally occurring colour and patterns in shells is as a result of mineral ions incorporated into the shell structure. But that doesn’t explain the post-mortem colouration of the scallop shells. Shallow burial of shells causes iron oxides to form in the tiny pits on the surface of the shell and causes brown staining. The black colour is usually due to microscopic crystals of iron sulphide. These crystals form in the absence of free oxygen which can occur if shells become buried deeper in mud or sand. Although my local harbour is sheltered, it doesn’t provide the deep mud conditions required to blacken shells, but there is a much more common cause. Burial under just a few centimetres of seaweed rotting on the beach will provide suitable anoxic conditions for sulphide formation. Hence blackened shells on the beach is a relatively quick process occurring under mounds of kelp and wrack. There are some mollusc species that live well buried into deeper sediment. The Ocean Quahog (Arctica islandica) is a subtidal species of clam that is renowned for it’s longevity. Some individuals have been recorded at over 500 years old. The shells of Quahogs have dark black colouration, but they have a long time to absorb the necessary pigment. Whilst the shell is buried in the sediment, a siphon to the water provides for food and oxygen to the creature below. Naturally acquired pigment probably strengthens the shell. Colour patterns often align with spiral or axial sculpture. Instead of producing and transporting a thicker shell, it might be more energy efficient for molluscs to make pigments. Pigments impede propagation of a crack in the shell. The structural explanation also works for colour inside of shells. A good example is Mercenaria mercenaria (the quahog or cherrystone clam). The purple inside the shell, hidden when the animal is alive, lies along the edges of the shell, just where predator whelks are likely to attack. Strangely young Merceneria don’t make the purple pigment. Their shells are too thin to resist attack anyway, so they concentrate their efforts on growing a thicker shell and surviving to when their pigment strengthened shell is going to ensure a long life. There are lots of other reasons for shells to have different colours. A favourite project for marine science students is to send them to look for colour variation in Flat Periwinkles (Littorina obtusata). In this case pigment is used for camouflage, allowing the winkles to hide amongst the bladder wrack on the shore. Pigments may serve as a warning to possible predators, or the pigmentation pattern may provide a template for future growth of the shell. But there doesn’t have to be a reason for pigmentation in all cases. Oxygenated mammalian blood is red, not for any evolutionary reason, but because that’s the chemistry of the situation.
2 Comments
|
AuthorMichelle has been scuba diving for nearly 30 years. Drawing on her science background she tackles some bits of marine science. and sometimes has a sideways glance at the people and events that she encounters in the diving world. Categories
All
Archives
December 2021
|